1 引言
“现场无需布置通信线缆,施工成本低,可实现站内移动运维…”4G无线通讯应用于光伏电站中,似乎有很多不可替代的优点。然而,理想很丰满,现实却很骨
感。光伏电站数据量大、监测节点多且相对分散、场内存在各种高压信号的干扰,诸多方面的原因给4G无线监控系统运行稳定性与可靠性带来了巨大的挑战,特别
是调度可靠性。笔者对某西北光伏电站实地考察后发现:该100MW电站并网运行一年后,系统一个月仍然上报了60387条告警记录,其中30%以上为通讯
故障,无独有偶,笔者近日在内蒙某光伏电站考察时同样发现了类似的现象。如果再考虑初始投资成本高、后期需要专业运维等不利因素,4G无线通讯,似乎又成
了光伏电站应用中的一个噱头。
到底4G无线通讯监控方案优劣如何呢?笔者接下来以专业技术的角度带您揭开其庐山真面目吧!
2 光伏电站监控系统架构
光伏系统有线通讯方案与4G无线通讯方案系统拓扑如图1所示。
图1 光伏电站监控系统拓扑图
有线方案中,每个发电单元内部以光纤形式输出并组成环网,通过核心交换机将数据上传到监控中心,而4G无线通讯方案中电站内需要建一座无线基站,每个光伏单元通过无线与基站进行通信,基站内核心网设备再将无线信号转成有线信号上传至监控中心。
3 可靠性分析
• 4G无线传输速率低,易受山丘等障碍物影响
光纤通讯容量大,传输速率可达10000Mbps,而4G无线方案可采用的通讯信道带宽最大仅为10MHz,理论通讯速率仅为40Mbps,因此,4G无
线通讯的传输速度比有线通讯低很多。且无线网络易受建筑物、树木和其它障碍物等结构影响,阻碍电磁波的传输,不是所有的角落都能覆盖得到,比如山丘,只有
通过自动降速以实现无线的无缝连接效果,保证接通,那就需损失传输速率!对于大型电站,占地面积比较大,最远端方阵的数传终端距离基站很远,信号传输过程
中很容易丢失,造成通讯故障。因此,在大型荒漠电站或山丘电站中,为防止信号被遮挡影响通讯等原因,现场将无线接收基站安装在采集方阵中央,然后通过较长
距离的光纤引至集控室,如图2所示。
图2 无线接收基站置于方阵中,信号通过光纤传输到集控室
• 4G无线方案抗电磁干扰能力差,易受光伏电站内高压电线等影响
光纤通讯的传输信号是光而不是电,在传输信号时不仅损耗小,而且不会受到厂区内高压电线等产生的强电磁场干扰。同时光纤环网能在网络出现意外故障情况下自
动恢复业务,网络生存能力强,自愈合时间小于20ms,通讯链路稳定可靠。而无线系统抗电磁干扰能力差,很容易产生邻频干扰和互调干扰。据中国移动在广州
某地区做的无线测试,由于天线互调干扰,导致小区上行吞吐量损失37%~47%,吞吐量的下降将会导致重要数据上报不及时,严重情况下造成通讯链路中断。
同时,站内无线信号不仅仅是干扰的“受害者”,也可能成为“污染源”,对电站周围其他无线信号产生干扰,甚至会对航空产生影响。
• 4G无线方案抗电磁干扰能力差,易受恶劣天气影响
光纤通讯以光纤为传播介质,埋设在地面下,不受天气影响。而4G无线信号易受雷雨雾天气影响。据英国《焦点》月刊报道,潮湿会减弱无线电波。通常情况下,
电波在雨雪天气的传播速度大约为晴朗天气的3/4,穿透能力减弱,传输范围变小。2006年9月13日澳洲新闻网报道:美国研究人员表示地球上的雷暴可干
扰无线电传输以及通讯设备的信号发送,易导致无线网络的暂时性中断,甚至造成室外无线设备的损坏。
• 4G无线方案数据安全性差
光纤通讯中使用的光波波长很短,频率很高,传输频带很宽,便于采用数字通信方式,可进行数字加密,且光信号只在光区传输,基本不会发生光“泄露”,无串音
干扰,数据安全性高。而无线信号在一个开放的空间传播,只要在无线接入点(AP)覆盖的范围内,终端都可以接收到无线信号,如同抗日影片中的电台传播一
样,信号很容易被人监听而导致数据泄露。即使采用最可靠的加密方式,也易被黑客攻击。随着装机量的不断增加,光伏发电作为多能源互联系统中的重要组成部
分,其运行安全性的要求越来越高。采用4G无线方案监控的光伏电站存在严重电力生产安全隐患。
• 4G无线方案调度可靠性差
4G无线通讯方案在工程实践中存在易受干扰,数据传输慢,甚至会出现通讯中断等问题,直接影响电网调度实时性和稳定性。部分地区的电网公司已分别出台了光
伏电站无功电压调节运行管理办法,明确规定:站内逆变器——通讯柜——监控后台间的通信链路应采用光纤通讯,且接收AGC/AVC调度指令或出力计划曲线
的响应时间不应超过10s。并且专用的无线频段需要向各地无线电管理机构申请,难度大,国内对于无线在工业使用也没有相应的标准,其合法性存在质疑。
表1 光纤通讯与4G无线通讯性能对比
• 4G无线方案现场应用表现差
笔者走访国内某西北光伏电站时发现,该光伏电站采用某公司提供的4G无线通讯方案,电站并网运行一年后,系统一个月仍然上报了60387条告警记录,其中
30%以上为通讯故障,如图3所示。无独有偶,笔者最近在考察内蒙一电站,也发生了同样的事情,该电站自2014年并网以来,所采用的无线监控系统至今仍
然问题不断,每日平均上报3000条故障,其中大部分是设备通讯故障。无线网络故障原因查找困难,使用设备监测调试时故障可能一直不复现,不监测时故障又
会出现,无线厂家技术人员现场调试几个月仍存在问题,调试难度大,人员专业水平要求高,给电站后期运维带来了巨大工作量和风险,增加了运维成本。
图3 某西北光伏电站监控后台告警界面
4 投资成本对比
4.1 50MW电站4G无线方案的初始投资比有线方案高123万
有线通讯方案,若考虑到电站有视频数据要求和带宽限制,可采用10~15个发电单元组成一个光纤环网。以一个50MW的光伏电站为例,笔者假设50MW光 伏电站中每10MW组成一个光纤环网,根据系统设计以及图1所示的监控系统拓扑图,得到两种通讯方式下,发电单元到监控中心之间的主要设备配置清单及成本 如表2所示。
表2 50MW电站不同通讯方案设备配置清单及成本对比
50MW光伏电站采用4G无线通讯方案比光纤以太网有线通讯方案的初始投资增加了123万元左右,相当于增加2.4分/W初始投资。
此外,4G无线方案,前期需进行工程勘测设计完成无线网络布置,中期调试阶段还需专门的技术人员进行干扰源测试,调试骨干网,并且通信基站和数传终端需要
使用外接电源供电,额外产生电源选择及施工布线成本。而有线方案中,通信线布置可以和电力线共用一个电缆沟,无需额外增加的施工布线成本,表2成本对比表
明:即使考虑布线施工成本,有线方案也比4G无线方案的初始投资低。
4.2 4 G无线方案的运维成本比有线方案高102万元
• 人力成本对比。有线方案技术成熟,调试简单,后期基本不需专门技术人员进行运维,而无线网需要懂网络知识的专业技
术人员进行网络设备运维,人员素质要求较高,无形增加了电站运维的人力成本。光伏电站规模越大,网络的设施越多,传输结构越复杂,网络设备的维护难度和范
围增加,人力成本将进一步增加。如果按50MW电站光伏电站仅雇佣一个懂网络的专业人员,年薪较普通运维人员高4万元估算,光伏电站25年生命周期内4G
无线方案的运维人力成本将比有线方案增加100万元。
• 设备更换成本对比。对于一个电站来说,埋于地下的导线很多,光纤只是其中很少一部分,一般现场都会做有标记,以防
后期施工发生损坏情况,因此光纤被挖断的概率极低。同时,有线方案所采用主要设备交换机也是比较成熟的产品,已应用很长时间,故障率低,价格低,设备更换
投资成本低。而无线通信基站的射频拉远单元(RRU)中部分设备,如天线,采用户外安装方式,即使不考虑雷电等自然灾害的破坏,一般7年左右就需全部更
换,对于具有25年生命周期的电站至少需要更换3~4次,如果按更换一次3万元计算,后期运维中设备投资成本将在9万~12万。
表3 有线方案与4G无线方案后期运维成本对比
仅仅考虑运维人力成本和户外天线更换,一个50MW光伏电站,4G无线方案的运维成本比有线
方案就高出102.7万左右,而从表2中可以看出有线方案中发电单元到监控中心的初始投资也仅为40万元左右,因此,即使目前市场上有些厂家为了推广光伏
电站4G无线通讯的方案,采用免费赠送的方式,但是从后期运维成本上来看仍然是不划算的。
5 结论
相信通过上述专业角度的技术分析,孰优孰劣一目了然了吧。4G无线监控方案投资成本高、系统运行不稳定、通信故障率高、无法实时可靠的响应电力系统调度要
求等诸多缺点,俨然使其成为了光伏电站应用中的噱头,给电站运行可靠性及后期运维带来了巨大的隐患。相比之下,有线方案不仅可靠性高,且投资成本低,后期
运维简单,仍然是全球光伏行业的主流监控解决方案。即使是在人力成本极高的欧美发达国家,也是如此。